DocumentCode
2935698
Title
Temporal patterns in social media streams: Theme discovery and evolution using joint analysis of content and context
Author
Lin, Yu-Ru ; Sundaram, Hari ; De Choudhury, Munmun ; Kelliher, Aisling
Author_Institution
Arts Media Eng., Arizona State Univ., Tempe, AZ, USA
fYear
2009
fDate
June 28 2009-July 3 2009
Firstpage
1456
Lastpage
1459
Abstract
Online social networking sites such as Flickr and Facebook provide a diverse range of functionalities that foster online communities to create and share media content. In particular, Flickr groups are increasingly used to aggregate and share photos about a wide array of topics or themes. Unlike photo repositories where images are typically organized with respect to static topics, the photo sharing process as in Flickr often results in complex time-evolving social and visual patterns. Characterizing such time-evolving patterns can enrich media exploring experience in a social media repository. In this paper, we propose a novel framework that characterizes distinct time-evolving patterns of group photo streams. We use a nonnegative joint matrix factorization approach to incorporate image content features and contextual information, including associated tags, photo owners and post times. In our framework, we consider a group as a mixture of themes - each theme exhibits similar patterns of image content and context. The theme extraction is to best explain the observed image content features and associations with tags, users and times. Extensive experiments on a Flickr dataset suggest that our approach is able to extract meaningful evolutionary patterns from group photo streams. We evaluate our method through a tag prediction task. Our prediction results outperform baseline methods, which indicate the utility of our theme based joint analysis.
Keywords
computer vision; evolutionary computation; matrix decomposition; social networking (online); Flickr dataset; evolutionary patterns; image content features; image contextual information; nonnegative joint matrix factorization approach; online social networking sites; social media repository; social media streams; temporal patterns; theme discovery; theme evolution; Aggregates; Art; Bars; Data mining; Facebook; Intelligent networks; Pattern analysis; Social network services; Streaming media; Text mining;
fLanguage
English
Publisher
ieee
Conference_Titel
Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on
Conference_Location
New York, NY
ISSN
1945-7871
Print_ISBN
978-1-4244-4290-4
Electronic_ISBN
1945-7871
Type
conf
DOI
10.1109/ICME.2009.5202777
Filename
5202777
Link To Document