DocumentCode :
2935869
Title :
Stochastic Cramer Rao bounds for non-Gaussian signals and parameters
Author :
Liang, Weibo ; Manry, Michael T. ; Yu, Qiang ; Dawson, Michael S. ; Fung, Adrian K.
Author_Institution :
Dept. of Electr. Eng., Texas Univ., Arlington, TX, USA
Volume :
5
fYear :
1995
fDate :
9-12 May 1995
Firstpage :
3367
Abstract :
In minimum mean square estimation, an estimate θ´ of the random parameter vector θ is obtained from an input vector y. We develop bounds on the variances of elements of θ´-θ for the case where input signal vector y and the parameter vector θ are non-Gaussian. First, we use linear transformations to obtain a new parameter vector φ from θ and a new input vector x from y. These new vectors are approximately Gaussian because of the central limit theorem, so stochastic Cramer-Rao bounds on the variance of φ´-φ are tight. Lastly, bounds on variances of elements of θ-θ are obtained
Keywords :
parameter estimation; random processes; signal processing; stochastic processes; transforms; central limit theorem; input signal vector; input vector; linear transformations; minimum mean square estimation; nonGaussian parameters; nonGaussian signals; parameter vector; random parameter vector; stochastic Cramer Rao bounds; variances; Additive noise; Covariance matrix; Cramer-Rao bounds; Degradation; Equations; Gaussian noise; Neural networks; Stochastic processes; Stochastic resonance; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on
Conference_Location :
Detroit, MI
ISSN :
1520-6149
Print_ISBN :
0-7803-2431-5
Type :
conf
DOI :
10.1109/ICASSP.1995.479707
Filename :
479707
Link To Document :
بازگشت