DocumentCode :
2941002
Title :
Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes
Author :
Gaborit, Philippe ; Zemor, Gilles
Author_Institution :
XLIM, Limoges Univ.
fYear :
2006
fDate :
9-14 July 2006
Firstpage :
287
Lastpage :
291
Abstract :
The Gilbert-Varshamov bound states that the maximum size A2 (n,d) of a binary code of length n and minimum distance d satisfies A2(n,d)ges2n/V(n,d-1) where V(n,d)=XiEdi=0 (Eni) stands for the volume of a Hamming ball of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound could be improved to A2(n,d)gescn2n/V(n,d -1) for c a constant and d/nles0.499. In this paper we show that certain asymptotic families of linear binary [n, n/2] double circulant codes satisfy the same improved Gilbert-Varshamov bound
Keywords :
Hamming codes; binary codes; linear codes; Gilbert-Varshamov bound; Hamming ball; binary linear codes; double circulant codes; Binary codes; Graph theory; H infinity control; Hamming distance; Linear code; Welding; Double circulant codes; Gilbert-Varshamov; bound; linear codes; random coding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2006 IEEE International Symposium on
Conference_Location :
Seattle, WA
Print_ISBN :
1-4244-0505-X
Electronic_ISBN :
1-4244-0504-1
Type :
conf
DOI :
10.1109/ISIT.2006.261851
Filename :
4035968
Link To Document :
بازگشت