DocumentCode :
2941398
Title :
A CS-based strategy for the design of shaped-beam sparse arrays
Author :
Carlin, M. ; Oliveri, G. ; Massa, Andrea
Author_Institution :
DISI, Univ. of Trento, Trento, Italy
fYear :
2011
fDate :
3-8 July 2011
Firstpage :
1996
Lastpage :
1999
Abstract :
The problem of synthesizing maximally-sparse linear arrays with complex excitations is solved through a numerically-efficient approach based on the Bayesian Compressive Sampling (BCS). The array design problem is re-cast in a probabilistic framework, and a fast relevance vector machine (RVM) is employed for the computation of the optimal layout and associated complex weights. A preliminary numerical validation is presented to assess the potentialities and limitations of the proposed approach.
Keywords :
Bayes methods; antenna radiation patterns; linear antenna arrays; sampling methods; Bayesian compressive sampling; array design; complex excitation; fast relevance vector machine; maximally sparse linear arrays; optimal layout; probabilistic framework; shaped beam sparse array; Bayesian methods; Finite element methods; Layout; Pattern matching; Phased arrays; Array synthesis; Bayesian compressive sampling; linear arrays; relevance vector machine; sparse arrays;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on
Conference_Location :
Spokane, WA
ISSN :
1522-3965
Print_ISBN :
978-1-4244-9562-7
Type :
conf
DOI :
10.1109/APS.2011.5996897
Filename :
5996897
Link To Document :
بازگشت