DocumentCode :
294293
Title :
Complete feedback invariant form for linear output feedback
Author :
Kim, Sue-Woon ; Lee, E. Bruce
Author_Institution :
Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA
Volume :
3
fYear :
1995
fDate :
13-15 Dec 1995
Firstpage :
2718
Abstract :
It will be shown that a complete set of feedback invariants for linear (or static) output feedback is explicitly defined under the Grassman space framework. Specifically, it is established that the Grassmann invariant form of linear multivariable system (rigorously, multivector nonzero decomposable form over a rational vector space associated with transfer function matrix), presents a global, minimal and complete feedback invariant form in linear output feedback pole-assignment condition. A former negative preclusion, nonclosed orbit problem for output feedback equivalence in linear algebraic group approach, is re-analyzed in the Grassmann invariant condition (so called, Plucker matrix full-rank condition). A constructive algorithm for the complete feedback invariant form is given and illustrated in a concrete way
Keywords :
feedback; multivariable control systems; pole assignment; transfer function matrices; Grassman space framework; Plucker matrix full-rank condition; complete feedback invariant form; linear algebraic group approach; linear multivariable system; linear output feedback; linear output feedback pole-assignment condition; multivector nonzero decomposable form; negative preclusion nonclosed orbit problem; output feedback equivalence; rational vector space; static output feedback; transfer function matrix; Concrete; Control systems; Gain; Linear systems; MIMO; Matrix decomposition; Output feedback; State feedback; Transfer functions; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
0-7803-2685-7
Type :
conf
DOI :
10.1109/CDC.1995.478526
Filename :
478526
Link To Document :
بازگشت