DocumentCode :
2943184
Title :
Evaluating trends of airborne contaminants by using support vector regression techniques
Author :
Sotomayor-Olmedo, Artemio ; Aceves-Fernandez, M. Antonio ; Gorrostieta-Hurtado, Efren ; Pedraza-Ortega, J. Carlos ; Vargas-Soto, J. Emilio ; Ramos-Arreguin, J. Manuel ; Villaseñor-Carillo, U.
Author_Institution :
Fac. de Inf., Univ. Autonoma de Queretaro, Queretaro, Mexico
fYear :
2011
fDate :
Feb. 28 2011-March 2 2011
Firstpage :
137
Lastpage :
141
Abstract :
Monitoring, modeling and forecasting of air quality parameters are important topics in environmental and health research due to their impact caused by exposing to air pollutants in urban environments. The aim of this article is to show that forecast of daily airborne pollution using support vector machines (SVM) is feasible in regression mode. Results are presented using data measurements of Particulate Matter of aerodynamical size on the order of 10 and 2.5 micrograms (PMx) in London-Bloomsbury at south England.
Keywords :
air pollution; environmental science computing; regression analysis; support vector machines; London-Bloomsbury; SVM; aerodynamical size; air pollutant; air quality parameter; airborne contaminant; daily airborne pollution forecasting; particulate matter; regression mode; south England; support vector regression technique; urban air pollution; Air pollution; Atmospheric modeling; Data models; Kernel; Polynomials; Support vector machines; Training; PMx; Particulate matter; Support Vector Machines; airborne pollution; forecast;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Communications and Computers (CONIELECOMP), 2011 21st International Conference on
Conference_Location :
San Andres Cholula
Print_ISBN :
978-1-4244-9558-0
Type :
conf
DOI :
10.1109/CONIELECOMP.2011.5749350
Filename :
5749350
Link To Document :
بازگشت