DocumentCode :
2943262
Title :
A Context-Based State Estimation Technique for Hybrid Systems
Author :
Skaff, Sarjoun ; Rizzi, Alfred A. ; Choset, Howie ; Lin, Pei-Chun
Author_Institution :
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA; sarjoun@ri.cmu.edu
fYear :
2005
fDate :
18-22 April 2005
Firstpage :
3924
Lastpage :
3929
Abstract :
This paper proposes an approach to robust state estimation for mobile robots with intermittent dynamics. The approach consists of identifying the robot’s mode of operation by classifying the output of onboard sensors into mode-specific contexts. The underlying technique seeks to efficiently use available sensor information to enable accurate, high-bandwidth mode identification. Context classification is combined with multiple-model filtering in order to significantly improve the accuracy of state estimates for hybrid systems. This approach is validated in simulation and shown experimentally to produce accurate estimates on a jogging robot using low-cost sensors.
Keywords :
Classification; Hybrid Systems; Multiple-Model Filtering; State Estimation; Acceleration; Filtering; Filters; Legged locomotion; Mobile robots; Orbital robotics; Robot sensing systems; Robustness; Space technology; State estimation; Classification; Hybrid Systems; Multiple-Model Filtering; State Estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on
Print_ISBN :
0-7803-8914-X
Type :
conf
DOI :
10.1109/ROBOT.2005.1570720
Filename :
1570720
Link To Document :
بازگشت