DocumentCode :
2943351
Title :
Which Codes Have 4-Cycle-Free Tanner Graphs?
Author :
Halford, Thomas R. ; Chugg, Keith M. ; Grant, Alex J.
Author_Institution :
Inst. of Commun. Sci., Southern California Univ., Los Angeles, CA
fYear :
2006
fDate :
9-14 July 2006
Firstpage :
871
Lastpage :
875
Abstract :
Let C be an [n, k, d] binary linear code with rate R = k/n and dual Cperp. In this correspondence, it is shown that C can be represented by a 4-cycle-free Tanner graph only if: pdperp les lfloorradicnp(p-1)+n2/4+n/2rfloor where p = n - k and dperp is the minimum distance of Cperp . By applying this result, it is shown that 4-cycle-free Tanner graphs do not exist for many classical binary linear block codes
Keywords :
binary codes; graph theory; linear codes; 4-cycle-free Tanner graph; binary linear code; Australia; Bipartite graph; Block codes; Graph theory; Graphical models; Iterative algorithms; Iterative decoding; Lakes; Linear code; Parity check codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2006 IEEE International Symposium on
Conference_Location :
Seattle, WA
Print_ISBN :
1-4244-0505-X
Electronic_ISBN :
1-4244-0504-1
Type :
conf
DOI :
10.1109/ISIT.2006.261717
Filename :
4036088
Link To Document :
بازگشت