DocumentCode :
294347
Title :
Continuous-time canonical state-space model identification via Poisson moment functionals
Author :
Garnier, H. ; Sibille, P. ; Richard, A.
Author_Institution :
Centre de Recherche en Autom., Univ. Henri Poincare, Vandoeuvre-les-Nancy, France
Volume :
3
fYear :
1995
fDate :
13-15 Dec 1995
Firstpage :
3004
Abstract :
In this paper, a method is presented for estimating continuous-time state-space models for linear time-invariant multivariable systems. The proposed method does not require the observation of all state variables which is seldom the case in practice. The Poisson moment functional approach is used to handle the time-derivative problem. It is shown that the simple least-squares algorithm always gives asymptotically biased estimates in the presence of noise. An instrumental variable algorithm based on Poisson moment functionals of system signals is then developed for reducing the bias of the parameter estimates. The least-squares and instrumental variable algorithms are evaluated by means of a numerical example through Monte Carlo simulations
Keywords :
Monte Carlo methods; functional equations; least squares approximations; linear systems; multivariable control systems; parameter estimation; Monte Carlo simulations; Poisson moment functionals; asymptotically biased estimates; continuous-time canonical state-space model identification; instrumental variable algorithm; least-squares algorithm; linear time-invariant multivariable systems; time-derivative problem; Differential algebraic equations; Differential equations; Instruments; Low pass filters; MIMO; Noise measurement; Parameter estimation; Polynomials; State estimation; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
0-7803-2685-7
Type :
conf
DOI :
10.1109/CDC.1995.478603
Filename :
478603
Link To Document :
بازگشت