DocumentCode :
294348
Title :
Development of a recursive algorithm for parameter uncertainty interval estimation
Author :
Tzes, Anthony ; Hu, Qingyang ; Le, Ke
Author_Institution :
Control/Robotics Res. Lab., Polytechnic Univ., Brooklyn, NY, USA
Volume :
3
fYear :
1995
fDate :
13-15 Dec 1995
Firstpage :
3010
Abstract :
This article addresses the problem of recursively estimating the parameter uncertainty intervals for a linear discrete system, whose output measurements are contaminated with noise. The estimator provides the maximally tight bounding rectangular hyperparallelepiped, whose vertices are computed in an optimal manner so as to contain all parameter values consistent with the system structure and the l1 norm of the error bounds. The proposed method relies on a recursive formulation of the underlying posed linear programming problem in Milanese and Belforte (1982), by exploring its distinct structure. The computational effort associated with the finding of this optimal outer box is minimal. A recursive algorithm is presented for the cases of an increasing, and a fixed size sample time-sliding window. Simulation studies are included to highlight the algorithm´s performance
Keywords :
discrete systems; linear programming; linear systems; recursive estimation; error bounds; l1 norm; linear discrete system; linear programming; maximally tight bounding rectangular hyperparallelepiped; parameter uncertainty interval estimation; recursive algorithm; Control systems; Laboratories; Linear programming; Noise measurement; Parameter estimation; Recursive estimation; Robot control; Robustness; Samarium; Uncertain systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1995., Proceedings of the 34th IEEE Conference on
Conference_Location :
New Orleans, LA
ISSN :
0191-2216
Print_ISBN :
0-7803-2685-7
Type :
conf
DOI :
10.1109/CDC.1995.478604
Filename :
478604
Link To Document :
بازگشت