• DocumentCode
    294593
  • Title

    Optimal linear feature transformations for semi-continuous hidden Markov models

  • Author

    Schukat-Talamazzini, E. Günter ; Hornegger, Joachim ; Niemann, Heinrich

  • Author_Institution
    Friedrich-Alexander Univ., Erlangen, Germany
  • Volume
    1
  • fYear
    1995
  • fDate
    9-12 May 1995
  • Firstpage
    369
  • Abstract
    Linear discriminant or Karhunen-Loeve transforms are established techniques for mapping features into a lower dimensional subspace. This paper introduces a uniform statistical framework, where the computation of the optimal feature reduction is formalized as a maximum-likelihood estimation problem. The experimental evaluation of this suggested extension of linear selection methods shows a slight improvement of the recognition accuracy
  • Keywords
    feature extraction; hidden Markov models; maximum likelihood estimation; optimisation; speech recognition; statistical analysis; transforms; Karhunen-Loeve transforms; experimental evaluation; linear discriminant transforms; linear selection methods; lower dimensional subspace; maximum-likelihood estimation; optimal linear feature transformations; recognition accuracy; semi-continuous hidden Markov models; uniform statistical framework; Continuous production; Feature extraction; Hidden Markov models; Karhunen-Loeve transforms; Labeling; Maximum likelihood estimation; Parameter estimation; Speech processing; Speech recognition; Vectors; Yttrium;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on
  • Conference_Location
    Detroit, MI
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-2431-5
  • Type

    conf

  • DOI
    10.1109/ICASSP.1995.479598
  • Filename
    479598