DocumentCode :
2947267
Title :
Selection of tuning parameters for support vector machines
Author :
Solo, Victor
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
Volume :
5
fYear :
2005
fDate :
18-23 March 2005
Abstract :
Support vector machines have become important in classification, biometrics, machine learning and pattern recognition. However, successful application requires selection of various tuning parameters such as kernel parameters and penalty or margin parameters. We apply a new technique for this problem which provides very simple structure for the automatic selector.
Keywords :
biometrics (access control); learning (artificial intelligence); pattern classification; support vector machines; tuning; automatic selector structure; biometrics; classification; kernel parameters; machine learning; margin parameters; pattern recognition; penalty parameters; support vector machines; tuning parameter selection; Application software; Biometrics; Inverse problems; Kernel; Machine learning; Pattern recognition; Supervised learning; Support vector machine classification; Support vector machines; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8874-7
Type :
conf
DOI :
10.1109/ICASSP.2005.1416284
Filename :
1416284
Link To Document :
بازگشت