DocumentCode
294765
Title
Simultaneous stereo-motion fusion and 3-D motion tracking
Author
Altunbasak, Yucel ; Tekalp, A. Murat ; Bozdagi, Gozde
Author_Institution
Dept. of Electr. Eng., Rochester Univ., NY, USA
Volume
4
fYear
1995
fDate
9-12 May 1995
Firstpage
2277
Abstract
Presents a new framework for combining maximum likelihood (ML) stereo-motion fusion with adaptive iterated extended Kalman filtering (IEKF) for 3-D motion tracking. The ML stereo-fusion step, with two stereo-pairs, generates observations of 3-D feature matches to be used by the IEKF step. The IEKF step, in turn, computes updated 3-D motion parameter estimates to be used by the ML stereo-motion fusion step. The covariance of the observation noise process is regulated by the value of the ML cost function to address occlusion related problems. The proposed simultaneous approach is compared with performing the 3-D feature correspondence estimation and the Kalman filtering separately using simulated stereo imagery
Keywords
adaptive Kalman filters; covariance analysis; feature extraction; image matching; iterative methods; maximum likelihood estimation; motion estimation; sensor fusion; stereo image processing; tracking; 3-D feature matches; 3-D motion tracking; adaptive iterated extended Kalman filtering; cost function; covariance; feature correspondence estimation; maximum likelihood; motion parameter estimates; observation noise; occlusion related problems; stereo-motion fusion; stereo-pairs; Adaptive filters; Cameras; Chromium; Cost function; Filtering; Fusion power generation; Geometry; Kalman filters; Maximum likelihood estimation; Motion estimation; Parameter estimation; Tracking;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on
Conference_Location
Detroit, MI
ISSN
1520-6149
Print_ISBN
0-7803-2431-5
Type
conf
DOI
10.1109/ICASSP.1995.479945
Filename
479945
Link To Document