DocumentCode :
2948464
Title :
A new upper bound on the capacity of a class of primitive relay channels
Author :
Tandon, Ravi ; Ulukus, Sennur
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD
fYear :
2008
fDate :
23-26 Sept. 2008
Firstpage :
1562
Lastpage :
1569
Abstract :
We obtain a new upper bound on the capacity of a class of discrete memoryless relay channels. For this class of relay channels, the relay observes an i.i.d. sequence T, which is independent of the channel input X. The channel is described by a set of probability transition functions p(y|x, t) for all (x, t, y) isin X times T times Y. Furthermore, a noiseless link of finite capacity R0 exists from the relay to the receiver. Although the capacity for these channels is not known in general, the capacity of a subclass of these channels, namely when T = g(X, Y ), for some deterministic function g, was obtained in Kim (2008) and it was shown to be equal to the cut-set bound. Another instance where the capacity was obtained was in Aleksic et al. (2007), where the channel output Y can be written as Y = X oplus Z, where oplus denotes modulo-m addition, Z is independent of X, |X| = |Y| = m, and T is some stochastic function of Z. The compress-and-forward (CAF) achievability scheme (Cover and Gamal, 1979) was shown to be capacity achieving in both cases. Using our upper bound we recover the capacity results of Kim, and Aleksic et al. We also obtain the capacity of a class of channels which does not fall into either of the classes studied in Kim, and Aleksic et al. For this class of channels, CAF scheme is shown to be optimal but capacity is strictly less than the cut-set bound for certain values of R0. We further illustrate the usefulness of our bound by evaluating it for a particular relay channel with binary multiplicative states and binary additive noise for which the channel is given as Y = TX +N. We show that our upper bound is strictly better than the cut-set upper bound for certain values of R0 but it lies strictly above the rates yielded by the CAF achievability scheme.
Keywords :
channel capacity; memoryless systems; probability; binary additive noise; channel capacity; compress-and-forward achievability scheme; deterministic function; discrete memoryless channels; finite capacity; primitive relay channels; probability transition functions; stochastic function; upper bound; Additive noise; Capacity planning; Channel capacity; Educational institutions; Memoryless systems; Noise reduction; Relays; Stochastic processes; Transmitters; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communication, Control, and Computing, 2008 46th Annual Allerton Conference on
Conference_Location :
Urbana-Champaign, IL
Print_ISBN :
978-1-4244-2925-7
Electronic_ISBN :
978-1-4244-2926-4
Type :
conf
DOI :
10.1109/ALLERTON.2008.4797748
Filename :
4797748
Link To Document :
بازگشت