Title :
Dealing with multigranular spatio-temporal databases to manage psychiatric epidemiology data
Author :
Belussi, A. ; Combi, C. ; Pozzani, G. ; Amaddeo, F. ; Rambaldelli, G. ; Salazzari, D.
Author_Institution :
Dept. of Comput. Sci., Univ. of Verona, Verona, Italy
Abstract :
In epidemiology spatio-temporal data may represent surveillance data and origins of diseases. In order to better exploit these data, temporal and spatial dimensions could be managed considering them as meta-data useful to retrieve classical data. In this paper, we propose to use a framework for spatio-temporal granularities with the aim to improve the querying of clinical spatio-temporal data. We show how granularities can be used to enrich a psychiatric case register. We exemplify our approach reporting spatio-temporal queries, based on granularities, useful for epidemiological studies.
Keywords :
diseases; medical information systems; meta data; query processing; classical data retrieval; clinical spatio-temporal data querying; disease origins; epidemiological studies; meta-data; multigranular spatio-temporal databases; psychiatric epidemiology data management; spatio-temporal granularities; surveillance data; Aggregates; Database languages; Diseases; Registers; Semantics; Spatial databases;
Conference_Titel :
Computer-Based Medical Systems (CBMS), 2012 25th International Symposium on
Conference_Location :
Rome
Print_ISBN :
978-1-4673-2049-8
DOI :
10.1109/CBMS.2012.6266320