DocumentCode :
2950062
Title :
Semiparametric approach to Nonstationary Signal Analysis
Author :
Ku, Y.G. ; Kawasumi, Masashi
Author_Institution :
Tokyo Denki Univ., Tokyo
fYear :
2008
fDate :
4-6 Jan. 2008
Firstpage :
158
Lastpage :
162
Abstract :
We suggest a semiparametric approach to analyze nonstationary signal. A Gamma probability density and maximum likelihood is employed to estimate the most model order and model coefficients on the assumption that model parameters are distributed on kernel density estimator with two hyper-paraneters. The innovation noise is no more identically distributed in semiparametric method. The simulated results showed two hyper-parameters alpha=0.15 and beta=0.99 are determined for the most suitable model parameters and had an advantage of both parametric and nonparametric method.
Keywords :
maximum likelihood estimation; probability; signal processing; Gamma probability density; innovation noise; kernel density estimator; maximum likelihood; model order coefficients; nonstationary signal analysis; semiparametric approach; Autoregressive processes; Brain modeling; Communications technology; Kernel; Mathematical model; Maximum likelihood estimation; Signal analysis; Signal processing; Smoothing methods; Technological innovation; Kernel Density Estimator; Maximum likelihood; Nonstationary; Semiparametric; Time-Varying Autoregressive;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing, Communications and Networking, 2008. ICSCN '08. International Conference on
Conference_Location :
Chennai
Print_ISBN :
978-1-4244-1924-1
Electronic_ISBN :
978-1-4244-1924-1
Type :
conf
DOI :
10.1109/ICSCN.2008.4447180
Filename :
4447180
Link To Document :
بازگشت