Title :
Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects
Author :
Zhang, Qin ; Hayashibe, Mitsuhiro ; Papaiordanidou, Maria ; Fraisse, Philippe ; Fattal, Charles ; Guiraud, David
Author_Institution :
LIRMM, INRIA Sophia-Antipolis, Montpellier, France
fDate :
Aug. 31 2010-Sept. 4 2010
Abstract :
Muscle fatigue is an unavoidable problem when electrical stimulation is applied to paralyzed muscles. The detection and compensation of muscle fatigue is essential to avoid movement failure and achieve desired trajectory. This work aims to predict ankle plantar-flexion torque using stimulus evoked EMG (eEMG) during different muscle fatigue states. Five spinal cord injured patients were recruited for this study. An intermittent fatigue protocol was delivered to triceps surae muscle to induce muscle fatigue. A hammerstein model was used to capture the muscle contraction dynamics to represent eEMG-torque relationship. The prediction of ankle torque was based on measured eEMG and past measured or past predicted torque. The latter approach makes it possible to use eEMG as a synthetic force sensor when force measurement is not available in daily use. Some previous researches suggested to use eEMG information directly to detect and predict muscle force during fatigue assuming a fixed relationship between eEMG and generated force. However, we found that the prediction became less precise with the increase of muscle fatigue when fixed parameter model was used. Therefore, we carried out the torque prediction with an adaptive parameters using the latest measurement. The prediction of adapted model was improved with 16.7%-50.8% comparing to the fixed model.
Keywords :
biomechanics; biomedical measurement; electromyography; force sensors; physiological models; adaptive parameters; ankle plantar-flexion torque; electrical stimulation; hammerstein model; intermittent fatigue protocol; movement failure; muscle contraction dynamics; muscle fatigue states; paralyzed muscles; spinal cord injured patients; stimulus evoked EMG; synthetic force sensor; triceps surae muscle; Adaptation model; Fatigue; Force; Muscles; Predictive models; Torque; Torque measurement; Adult; Algorithms; Computer Simulation; Electric Stimulation; Electromyography; Female; Humans; Male; Middle Aged; Models, Biological; Muscle Contraction; Muscle Fatigue; Muscle, Skeletal; Spinal Cord Injuries;
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE
Conference_Location :
Buenos Aires
Print_ISBN :
978-1-4244-4123-5
DOI :
10.1109/IEMBS.2010.5627745