Abstract :
Computation with information described in natural language is closely related to Computing with Words. NL-Computation is of intrinsic importance because much of human knowledge is described in natural language. This is particularly true in such fields as economics, data mining, systems engineering, risk assessment and emergency management. It is safe to predict that as we move further into the age of machine intelligence and mechanized decision-making, NL-Computation will grow in visibility and importance. Our approach to NL-Computation centers on what is referred to as generalized-constraint-based computation, or GC-Computation for short. A fundamental thesis which underlies NL-Computation is that information may be interpreted as a generalized constraint. A generalized constraint is expressed as X isr R, where X is the constrained variable, R is a constraining relation and r is an indexical variable which defines the way in which R constrains X. The principal constraints are possibilistic, veristic, probabilistic, usuality, random set, fuzzy graph and group. Generalized constraints may be combined, qualified, propagated, and counter propagated, generating what is called the Generalized Constraint Language, GCL. The key underlying idea is that information conveyed by a proposition may be represented as a generalized constraint, that is, as an element of GCL.
Keywords :
constraint handling; decision making; natural language processing; GC-Computation; Generalized Constraint Language; NL-Computation; generalized-constraint-based computation; machine intelligence; mechanized decision-making; natural language processing; Data engineering; Data mining; Disaster management; Economic forecasting; Engineering management; Humans; Machine intelligence; Natural languages; Risk management; Systems engineering and theory;