Title :
Local Intensity Order Pattern for feature description
Author :
Wang, Zhenhua ; Fan, Bin ; Wu, Fuchao
Author_Institution :
Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China
Abstract :
This paper presents a novel method for feature description based on intensity order. Specifically, a Local Intensity Order Pattern(LIOP) is proposed to encode the local ordinal information of each pixel and the overall ordinal information is used to divide the local patch into subregions which are used for accumulating the LIOPs respectively. Therefore, both local and overall intensity ordinal information of the local patch are captured by the proposed LIOP descriptor so as to make it a highly discriminative descriptor. It is shown that the proposed descriptor is not only invariant to monotonic intensity changes and image rotation but also robust to many other geometric and photometric transformations such as viewpoint change, image blur and JEPG compression. The proposed descriptor has been evaluated on the standard Oxford dataset and four additional image pairs with complex illumination changes. The experimental results show that the proposed descriptor obtains a significant improvement over the existing state-of-the-art descriptors.
Keywords :
computational geometry; computer vision; data compression; feature extraction; image coding; image restoration; lighting; JEPG compression; LIOP descriptor; Oxford dataset; complex illumination changes; computer vision; discriminative descriptor; feature description; geometric transformations; image blur; image rotation; local intensity order pattern; local patch; monotonic intensity changes; photometric transformations; viewpoint change; Estimation; Feature extraction; Histograms; Indexes; Lighting; Robustness; Vectors;
Conference_Titel :
Computer Vision (ICCV), 2011 IEEE International Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4577-1101-5
DOI :
10.1109/ICCV.2011.6126294