DocumentCode :
2957109
Title :
Estimation from uncertain observations in distributed parameter systems covariance information
Author :
Nakamori, S. ; García-Ligero, M.J. ; Hermoso-Carazo, A. ; Linares-Perez, J.
Author_Institution :
Dept. of Technol., Kagoshima Univ., Japan
Volume :
2
fYear :
2003
fDate :
18-20 Sept. 2003
Firstpage :
849
Abstract :
This paper studies the least mean-squared error linear estimation problem in distributed parameter systems from uncertain observations when the observation equation, besides the multiplicative noise component, is also affected by white plus coloured additive noises. Using as information the covariances of the involved processes, and assuming that the autocovariance functions of the signal and coloured noise are given in a semidegenerate kernel form, we propose recursive algorithms for the filter and fixed-point smoother.
Keywords :
covariance matrices; distributed parameter systems; image processing; least mean squares methods; recursive estimation; smoothing methods; state-space methods; white noise; autocovariance function; distributed parameter system; fixed-point smoother; least mean-squared error linear estimation problem; multiplicative noise component; recursive algorithm; semidegenerate kernel; white plus coloured additive noise; Additive noise; Colored noise; Distributed parameter systems; Equations; Integrated circuit noise; Kernel; Nonlinear filters; Random variables; Signal processing; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the 3rd International Symposium on
Print_ISBN :
953-184-061-X
Type :
conf
DOI :
10.1109/ISPA.2003.1296397
Filename :
1296397
Link To Document :
بازگشت