Title :
A hierarchical Bayesian learning framework for autoregressive neural network modeling of time series
Author :
Acernese, F. ; De Rosa, Rosario ; Milano, Leopoldo ; Barone, Fabrizio ; Eleuteri, Antonio ; Tagliaferri, Roberto
Author_Institution :
Dipt. di Sci. Fisiche, Univ. "Federico II" di Napoli, Italy
Abstract :
In this paper a hierarchical Bayesian learning scheme for autoregressive neural network models is shown, which overcomes the problem of identifying the separate linear and nonlinear parts in the network. We show how the identification can be carried out by defining suitable priors on the parameter space, which help the learning algorithms to avoid undesired parameter configurations. Some applications to synthetic data are shown to validate the proposed methodology.
Keywords :
Bayes methods; autoregressive processes; learning (artificial intelligence); multilayer perceptrons; time series; autoregressive neural network; hierarchical Bayesian learning framework; linear network; nonlinear network; time series; Bayesian methods; Context modeling; Image analysis; Multi-layer neural network; Multilayer perceptrons; Neural networks; Predictive models; Signal analysis; Signal processing; Testing;
Conference_Titel :
Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the 3rd International Symposium on
Print_ISBN :
953-184-061-X
DOI :
10.1109/ISPA.2003.1296406