DocumentCode :
2957839
Title :
Learning specific-class segmentation from diverse data
Author :
Kumar, M. Pawan ; Turki, Haithem ; Preston, Dan ; Koller, Daphne
Author_Institution :
Comput. Sci. Dept., Stanford Univ., Stanford, CA, USA
fYear :
2011
fDate :
6-13 Nov. 2011
Firstpage :
1800
Lastpage :
1807
Abstract :
We consider the task of learning the parameters of a segmentation model that assigns a specific semantic class to each pixel of a given image. The main problem we face is the lack of fully supervised data. We address this issue by developing a principled framework for learning the parameters of a specific-class segmentation model using diverse data. More precisely, we propose a latent structural support vector machine formulation, where the latent variables model any missing information in the human annotation. Of particular interest to us are three types of annotations: (i) images segmented using generic foreground or background classes; (ii) images with bounding boxes specified for objects; and (iii) images labeled to indicate the presence of a class. Using large, publicly available datasets we show that our approach is able to exploit the information present in different annotations to improve the accuracy of a state-of-the art region-based model.
Keywords :
image segmentation; learning (artificial intelligence); support vector machines; background classes; diverse data; generic foreground; human annotation; image segmentation; latent structural support vector machine formulation; latent variables model; publicly available datasets; semantic class; specific-class segmentation model; state-of-the art region-based model; supervised data; Accuracy; Computational modeling; Image segmentation; Inference algorithms; Labeling; Semantics; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2011 IEEE International Conference on
Conference_Location :
Barcelona
ISSN :
1550-5499
Print_ISBN :
978-1-4577-1101-5
Type :
conf
DOI :
10.1109/ICCV.2011.6126446
Filename :
6126446
Link To Document :
بازگشت