Title :
Linear dependency modeling for feature fusion
Author :
Ma, Andy J H ; Yuen, Pong C.
Author_Institution :
Dept. of Comput. Sci., Hong Kong Baptist Univ., Hong Kong, China
Abstract :
This paper addresses the independent assumption issue in fusion process. In the last decade, dependency modeling techniques were developed under a specific distribution of classifiers. This paper proposes a new framework to model the dependency between features without any assumption on feature/classifier distribution. In this paper, we prove that feature dependency can be modeled by a linear combination of the posterior probabilities under some mild assumptions. Based on the linear combination property, two methods, namely Linear Classifier Dependency Modeling (LCDM) and Linear Feature Dependency Modeling (LFDM), are derived and developed for dependency modeling in classifier level and feature level, respectively. The optimal models for LCDM and LFDM are learned by maximizing the margin between the genuine and imposter posterior probabilities. Both synthetic data and real datasets are used for experiments. Experimental results show that LFDM outperforms all existing combination methods.
Keywords :
feature extraction; image classification; image fusion; statistical distributions; LCDM model; LFDM model; classifier distribution; feature fusion; linear classifier dependency modeling; linear combination property; linear feature dependency modeling; posterior probability; Computational modeling; Databases; Feature extraction; Joints; Optimization; Support vector machines; Training;
Conference_Titel :
Computer Vision (ICCV), 2011 IEEE International Conference on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4577-1101-5
DOI :
10.1109/ICCV.2011.6126477