DocumentCode :
2961618
Title :
SAR canonical feature extraction using molecule dictionaries
Author :
Hammond, G. Barry ; Jackson, Joana Abreu
Author_Institution :
Dept. of Electr. & Comput. Eng., Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA
fYear :
2013
fDate :
April 29 2013-May 3 2013
Firstpage :
1
Lastpage :
6
Abstract :
We apply a molecule dictionary approach to synthetic aperture radar canonical feature extraction. These canonical features capture physically-relevant scattering geometry as a function of shape type, frequency, aspect, and polarization. The extraction problem is a nonlinear nonconvex optimization that includes model order selection, feature classification, and parameter estimation. Previous work used image-based initializations, gradient descent, and a hierarchical classification scheme to extract the features. The dictionary approach shifts much of the computational burden to dictionary formation which can be done offline, prior to feature extraction. We show results for cases when the true feature lies in the dictionary and when it does not. Discussion of the practical challenges of dictionary construction is given in the context of recent sparse recovery literature.
Keywords :
concave programming; electromagnetic wave polarisation; electromagnetic wave scattering; feature extraction; geometry; image classification; nonlinear programming; parameter estimation; radar imaging; synthetic aperture radar; SAR canonical feature extraction; dictionary construction; dictionary formation; feature classification; model order selection; molecule dictionary approach; nonlinear nonconvex optimization; parameter estimation; physically-relevant scattering geometry; polarization; shape type; sparse recovery; synthetic aperture radar canonical feature extraction; Correlation; Dictionaries; Feature extraction; Scattering; Shape; Synthetic aperture radar;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Radar Conference (RADAR), 2013 IEEE
Conference_Location :
Ottawa, ON
ISSN :
1097-5659
Print_ISBN :
978-1-4673-5792-0
Type :
conf
DOI :
10.1109/RADAR.2013.6586161
Filename :
6586161
Link To Document :
بازگشت