Title :
On-line optimisation of a fuzzy drive controller using genetic algorithm
Author :
da Silva, Wander G. ; Acarnley, Paul P. ; Finch, John W.
Author_Institution :
Universidade do Estado de Minas Gerias, Brazil
Abstract :
This paper describes the application of genetic algorithms to the tuning of a fuzzy controller for a brushless dc motor drive. The fuzzy controller has two inputs, speed error and estimated load torque, and generates two current demand signals. These current demands are summed before being input to a proportional-integral current controller. The fuzzy controller membership function parameters are tuned on-line using the genetic algorithm to optimise the drive´s performance in the presence of changes in speed demand and load torque. Experimental results illustrate the efficiency of the technique and the impact of genetic algorithm parameters on the tuning process.
Keywords :
DC motor drives; PI control; brushless DC motors; control engineering computing; electric current control; fuzzy control; genetic algorithms; machine control; power engineering computing; brushless dc motor drive; fuzzy drive controller; genetic algorithm; membership function parameters; online optimisation; proportional-integral current controller; Automatic control; Brushless DC motors; Fuzzy control; Fuzzy logic; Genetic algorithms; Industrial control; Pi control; Proportional control; Torque control; Velocity control; Electric Drives.; Fuzzy Logic; Genetic Algorithm; Speed Con-trol;
Conference_Titel :
Industrial Electronics, 2004 IEEE International Symposium on
Print_ISBN :
0-7803-8304-4
DOI :
10.1109/ISIE.2004.1572026