DocumentCode :
2963457
Title :
Node-Pancyclicity of Faulty Twisted Cubes
Author :
Yang, Ming-Chien
Author_Institution :
Dept. of Knowledge Manage., Aletheia Univ., Tainan, Taiwan
fYear :
2009
fDate :
8-11 Dec. 2009
Firstpage :
63
Lastpage :
66
Abstract :
A graph G is pancyclic if, for every 4 ¿ l ¿ |V (G)|, G has a cycle of length l. A graph G is edge-pancyclic if, for an arbitrary edge e of G and every 4 ¿ l ¿ |V(G)|, G has a cycle of length l containing e. A graph G is node-pancyclic if, for an arbitrary node u of G and every 4 ¿ l ¿ |V (G)|, G has a cycle of length l containing u. The twisted cube is an important variant of the hypercube. Recently, Fan et al. proved that the n-dimensional twisted cube TQn is edge-pancyclic for every n ¿ 3. They also asked if TQn is edge-pancyclic with (n-3) faults for n ¿ 3. We find that TQn is not edge-pancyclic with only one faulty edge for any n ¿ 3. Then we prove that TQn is node-pancyclic with (langle n/2rangle - 1) faulty edges for every n ¿ 3. The result is optimal in the sense that with langle n/2rangle faulty edges, the faulty TQn is not node-pancyclic for any n ¿ 3.
Keywords :
fault diagnosis; graph theory; hypercube networks; arbitrary node; edge-pancyclic; faulty edges; faulty twisted cubes; hypercube; n-dimensional twisted cube; node-pancyclicity; Computer architecture; Computer networks; Concurrent computing; Data structures; Distributed computing; Fault tolerance; Hypercubes; Knowledge management; Multiprocessor interconnection networks; Parallel algorithms; embedding; interconnection networks; node-pancyclic; twisted cube;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Computing, Applications and Technologies, 2009 International Conference on
Conference_Location :
Higashi Hiroshima
Print_ISBN :
978-0-7695-3914-0
Type :
conf
DOI :
10.1109/PDCAT.2009.28
Filename :
5372820
Link To Document :
بازگشت