DocumentCode :
2963918
Title :
Toward a Complete E-learning System Framework for Semantic Analysis, Concept Clustering and Learning Path Optimization
Author :
Tam, Vincent ; Lam, Edmund Y. ; Fung, S.T.
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
fYear :
2012
fDate :
4-6 July 2012
Firstpage :
592
Lastpage :
596
Abstract :
Most online e-learning systems often demand the pre-requisite requirements between course modules and/or some relationship measures between involved concepts to be explicitly inputed by the course instructors so that an optimizer can be ultimately used to find an optimal learning sequence of involved concepts or modules for each individual learner after considering his/her past performance, learner´s profile, learning style, etc. However, relying solely on the course instructor´s input on the relationship among the involved concepts can be imprecise possibly due to the individual biases by human experts. Furthermore, the decision will become more complicated when various instructors hold conflicting views on the relationship among the involved concepts that may hinder any reasonable deduction. Therefore, we propose in this paper a complete system framework that can perform an explicit semantic analysis on the course materials, possibly aided by the relevant Wiki articles for any missing information about the involved concepts, to formulate the individual concepts, and followed by a heuristic-based concept clustering algorithm to group relevant concepts before finding their relationship measures. Lastly, an evolutionary optimizer will be used to return the optimal learning sequence after considering multiple experts´ recommended learning sequences possibly containing conflicting views. To demonstrate the feasibility of our prototype, we implemented a prototype of the proposed e-learning system framework. Our empirical evaluation clearly revealed the possible advantages of our proposal with many possible directions for future investigation.
Keywords :
Web sites; collaborative filtering; courseware; educational courses; evolutionary computation; information analysis; pattern clustering; recommender systems; Wiki articles; complete e-learning system framework; concept clustering; course instructors; course materials; course modules; evolutionary optimizer; heuristic-based concept clustering algorithm; individual concept formulation; learner profile; learning path optimization; learning style; multiple experts recommended learning sequences; online e-learning systems; optimal learning sequence; past performance; relationship measures; semantic analysis; Biological cells; Clustering algorithms; Electronic learning; Materials; Ontologies; Optimization; Proposals; concept clustering; learning objects; learning path optimization; learning styles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Learning Technologies (ICALT), 2012 IEEE 12th International Conference on
Conference_Location :
Rome
Print_ISBN :
978-1-4673-1642-2
Type :
conf
DOI :
10.1109/ICALT.2012.66
Filename :
6268185
Link To Document :
بازگشت