Title :
Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams
Author :
Zhang, Yaodong ; Glass, James R.
Author_Institution :
MIT Comput. Sci. & Artificial Intell. Lab., Cambridge, MA, USA
fDate :
Nov. 13 2009-Dec. 17 2009
Abstract :
In this paper, we present an unsupervised learning framework to address the problem of detecting spoken keywords. Without any transcription information, a Gaussian Mixture Model is trained to label speech frames with a Gaussian posteriorgram. Given one or more spoken examples of a keyword, we use segmental dynamic time warping to compare the Gaussian posteriorgrams between keyword samples and test utterances. The keyword detection result is then obtained by ranking the distortion scores of all the test utterances. We examine the TIMIT corpus as a development set to tune the parameters in our system, and the MIT Lecture corpus for more substantial evaluation. The results demonstrate the viability and effectiveness of our unsupervised learning framework on the keyword spotting task.
Keywords :
Gaussian distribution; speech recognition; unsupervised learning; Gaussian mixture model; Gaussian posteriorgrams; MIT Lecture corpus; TIMIT corpus; distortion scores; segmental DTW; segmental dynamic time warping; speech frames labelling; test utterances; unsupervised learning framework; unsupervised spoken keyword spotting; Acoustic distortion; Acoustic signal detection; Artificial intelligence; Automatic speech recognition; Computer science; Glass; Laboratories; Natural languages; Testing; Unsupervised learning;
Conference_Titel :
Automatic Speech Recognition & Understanding, 2009. ASRU 2009. IEEE Workshop on
Conference_Location :
Merano
Print_ISBN :
978-1-4244-5478-5
Electronic_ISBN :
978-1-4244-5479-2
DOI :
10.1109/ASRU.2009.5372931