DocumentCode :
2965532
Title :
Revisiting Boltzmann learning: parameter estimation in Markov random fields
Author :
Hansen, Lars Kai ; Andersen, Lars Nonboe ; Kjems, Ulrik ; Larsen, Jan
Author_Institution :
Electron. Inst., Tech. Univ., Lyngby, Denmark
Volume :
6
fYear :
1996
fDate :
7-10 May 1996
Firstpage :
3394
Abstract :
This article presents a generalization of the Boltzmann machine that allows us to use the learning rule for a much wider class of maximum likelihood and maximum a posteriori problems, including both supervised and unsupervised learning. Furthermore, the approach allows us to discuss regularization and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce those of the inhomogeneous teacher network
Keywords :
Boltzmann machines; Markov processes; image segmentation; learning (artificial intelligence); maximum likelihood estimation; unsupervised learning; Boltzmann learning; Boltzmann machine; Markov random fields; image segmentation; inhomogeneous Markov field; learning rule; maximum a posteriori estimation; maximum likelihood estimation; parameter estimation; regularization; supervised learning; unsupervised learning; Cost function; Image segmentation; Machine learning; Markov random fields; Maximum likelihood estimation; Minimization methods; Neural networks; Parameter estimation; Stochastic processes; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on
Conference_Location :
Atlanta, GA
ISSN :
1520-6149
Print_ISBN :
0-7803-3192-3
Type :
conf
DOI :
10.1109/ICASSP.1996.550606
Filename :
550606
Link To Document :
بازگشت