DocumentCode :
2966503
Title :
Axiomatization of Credulous Reasoning in Default Logics using Sequent Calculus
Author :
Lupea, Mihaiela
Author_Institution :
Fac. of Math. & Comput. Sci., Babes-Bolyai Univ., Cluj-Napoca, Romania
fYear :
2008
fDate :
26-29 Sept. 2008
Firstpage :
47
Lastpage :
53
Abstract :
The family of default logics formalize the default reasoning using nonmonotonic inference rules called defaults. In this paper we propose a uniform abstract characterization of credulous default inference associated to all versions (classical, justified, constrained, rational) of propositional default logic using the credulous default sequent calculi. These axiomatic systems combine sequent and anti-sequent calculus rules for propositional logic with reduction rules specific to the application of the defaults.
Keywords :
nonmonotonic reasoning; process algebra; antisequent calculus; axiomatic system; axiomatization; credulous default inference; credulous reasoning; default reasoning; nonmonotonic inference rule; propositional default logic; reduction rule; Calculus; Computer science; Constraint theory; Context modeling; Inference algorithms; Logic; Mathematics; Power system modeling; Scientific computing; Search problems; credulous inference; default logics; sequent calculus;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Symbolic and Numeric Algorithms for Scientific Computing, 2008. SYNASC '08. 10th International Symposium on
Conference_Location :
Timisoara
Print_ISBN :
978-0-7695-3523-4
Type :
conf
DOI :
10.1109/SYNASC.2008.43
Filename :
5204788
Link To Document :
بازگشت