Title :
On nil-Flat Modules, Nil-Injective and nil-Flat Dimensions
Author_Institution :
Coll. of Math., Qingdao Univ., Qingdao, China
Abstract :
This paper give the definition of N-coherent rings, and study the rings by nil-injective modules and nil-flat modules. For an N-coherent ring R , we show that every nil-flat right R- module is flat ⇔ every nil-injective left R- module is FP injective ⇔ every nil-injective pure injective left R-module is injective. Nil-injective dimension and nil-flat dimension are also studied. We show I.nil-id(R) ≤ n ⇔ Exti ( R/Ra, M) = 0 for every i ≥ n and every a ∈ N(R), and every left R-module M ⇔ Extn+1 ( R/Ra, M) = 0 for every a ∈ N(R) and every R-module M ⇔ pd (R/Ra) ≤ n for any a ∈ N(R).
Keywords :
algebra; n-coherent rings; nil-flat dimension; nil-flat modules; nil-injective dimension; Automation; N-coherent rings; nil-flat dimension; nil-flat module; nil-injective dimension; nil-injective module;
Conference_Titel :
Intelligent Computation Technology and Automation (ICICTA), 2011 International Conference on
Conference_Location :
Shenzhen, Guangdong
Print_ISBN :
978-1-61284-289-9
DOI :
10.1109/ICICTA.2011.568