DocumentCode :
2967178
Title :
Machine learning algorithms applied in automatic classification of social network users
Author :
de Lima, B.V.A. ; Machado, V.P.
Author_Institution :
Dept. de Inf. e Estetistica, Lab. de Intel. Computacional, Teresina, Brazil
fYear :
2012
fDate :
21-23 Nov. 2012
Firstpage :
58
Lastpage :
62
Abstract :
This work shows the results of an analysis of machine learning algorithms applied in automatic classification for the users of the social network called Scientia.Net. The tests were done using a database with 2000 users. The analysis identifies which algorithm performs better in automatic classification of users within a social network. The algorithms tested were Multilayer Perceptron, Support Vector Machine, Kohonen Network and K-means Algorithm.
Keywords :
learning (artificial intelligence); multilayer perceptrons; pattern classification; social networking (online); support vector machines; Kohonen network; Scientia.Net; automatic classification; k-means algorithm; machine learning algorithms; multilayer perceptron; social network users; support vector machine; Clustering algorithms; Databases; Error analysis; Machine learning algorithms; Social network services; Support vector machines; Training; Classification; Cluster; Machine Learning; Scientia.Net; profile;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Aspects of Social Networks (CASoN), 2012 Fourth International Conference on
Conference_Location :
Sao Carlos
Print_ISBN :
978-1-4673-4793-8
Type :
conf
DOI :
10.1109/CASoN.2012.6412378
Filename :
6412378
Link To Document :
بازگشت