Title :
Forward position problem of two PUMA-type robots manipulating a planar four-bar linkage payload
Author :
Pennock, G.R. ; Mattson, K.G.
Author_Institution :
Sch. of Mech. Eng., Purdue Univ., West Lafayette, IN, USA
Abstract :
This paper presents a closed-form solution to the forward position problem of two PUMA-type robots manipulating a planar four-bar linkage payload. The orientation of a specified payload link is described, in the plane of the payload, by a sixth-order polynomial and the angular displacement of a specified link in a robot end-effector is described by a second-order polynomial. Closed-form solutions for the remaining unknown angular displacement are obtained using orthogonal transformation matrices with dual number elements. The paper shows that, for a given set of robot input angles, twenty-four assembly configurations of the robot-payload system are possible. The polynomials provide insight into these configurations, and also reveal stationary configurations of the system. The paper emphasizes that an understanding of the kinematic geometry is important in the development of the closed-form solution. Graphical methods are presented which provide insight into the geometry, and a check of the analytical approach. For illustrative purposes, a numerical example of the two robots manipulating a four-bar linkage payload in a manufacturing process is presented
Keywords :
computational geometry; cooperative systems; displacement control; industrial manipulators; manipulator kinematics; materials handling; matrix algebra; polynomials; position control; PUMA-type robots; angular displacement; closed-form solutions; forward position; kinematic geometry; orthogonal transformation matrix; planar four-bar linkage payload manipulation; sixth-order polynomial; Assembly systems; Closed-form solution; Computational geometry; Couplings; Kinematics; Payloads; Polynomials; Robotic assembly; Robots; Transmission line matrix methods;
Conference_Titel :
Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on
Conference_Location :
Minneapolis, MN
Print_ISBN :
0-7803-2988-0
DOI :
10.1109/ROBOT.1996.506884