• DocumentCode
    29705
  • Title

    All the Stabilizer Codes of Distance 3

  • Author

    Yu, Son-Cheol ; Bierbrauer, Jurgen ; Ying Dong ; Qing Chen ; Oh, C.H.

  • Author_Institution
    Center for Quantum Technol., Nat. Univ. of Singapore, Singapore, Singapore
  • Volume
    59
  • Issue
    8
  • fYear
    2013
  • fDate
    Aug. 2013
  • Firstpage
    5179
  • Lastpage
    5185
  • Abstract
    We give necessary and sufficient conditions for the existence of stabilizer codes [[n, k, 3]] of distance 3 for qubits: n-k ≥ ⌈log2 (3n + 1)⌉ + ∈n, where ∈n = 1 if n = 84m-1/3 + {±1, 2} or n = 4m+2-1/3 -{1, 2, 3} for some integer m ≥ 1 and ∈n = 0 otherwise. Or equivalently, a code [[n, n - r, 3]] exists if and only if n ≤ (4r - 1)/3, (4r - 1)/3 - n ∉ {1, 2, 3} for even r and n ≤ 8 (4r-3 -1)/3, 8(4-3 - 1)/3 - n ≠ 1 for odd r. Given an arbitrary length n, we present an explicit construction for an optimal quantum stabilizer code of distance 3 that saturates the above bound.
  • Keywords
    error correction codes; arbitrary length; distance 3; optimal quantum stabilizer code; quantum error-correcting codes; qubits; Educational institutions; Error correction codes; Frequency modulation; Generators; Indexes; Physics; Vectors; 1-error correcting stabilizer codes; optimal codes; quantum Hamming bound; quantum error correction;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2259138
  • Filename
    6506105