DocumentCode :
2971050
Title :
Using Shannon´s Information Theory and Artificial Neural Networks to Implement Multimode Authentication
Author :
Phiri, Jackson ; Tie Jun Zhao
Author_Institution :
Machine Intell. & Natural Language Process. Group, Harbin Inst. of Technol., Harbin, China
fYear :
2010
fDate :
13-14 Oct. 2010
Firstpage :
271
Lastpage :
274
Abstract :
Artificial intelligence technologies have been applied in a number of systems to achieve learning and intelligent behavior. In this paper an artificial neural network is used to implement multimode authentication through information fusion. An information fusion model uses metrics computed from the identity attributes using Shannon´s information theory. Initialisation of the artificial neural network is achieved by using the Nguyen-Widrow function while Levenberg-Marquardt back propagation is used as the training algorithm.
Keywords :
information theory; learning (artificial intelligence); message authentication; neural nets; Levenberg-Marquardt back propagation; Nguyen-Widrow function; Shannon´s information theory; artificial intelligence technologies; artificial neural networks; identity attributes; information fusion model; intelligent behavior; learning behavior; metrics computed; multimode authentication; training algorithm; Artificial neural networks; Authentication; Hidden Markov models; Information theory; Measurement; Neurons; Training; Artificial Neural Network; Identity Attributes; Information Fusion; Multimode Authentication;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications and Intelligence Information Security (ICCIIS), 2010 International Conference on
Conference_Location :
Nanning
Print_ISBN :
978-1-4244-8649-6
Electronic_ISBN :
978-0-7695-4260-7
Type :
conf
DOI :
10.1109/ICCIIS.2010.38
Filename :
5629239
Link To Document :
بازگشت