DocumentCode :
2972839
Title :
Identification of multivariable linear parameter-varying systems based on subspace techniques
Author :
Verdult, Vincent ; Verhaegen, Michel
Author_Institution :
Fac. of Appl. Phys., Twente Univ., Enschede, Netherlands
Volume :
2
fYear :
2000
fDate :
2000
Firstpage :
1567
Abstract :
Presents a subspace type of identification method for multivariable linear parameter-varying systems in state space representation with affine parameter dependence. It is shown that a major problem with subspace methods for this kind of systems is the enormous dimensions of the data matrices involved. To overcome the curse of dimensionality, we suggest to use only the most dominant rows of the data matrices in estimating the model. An efficient selection algorithm is discussed that does not require the formation of the complete data matrices, but can process them row by row
Keywords :
identification; linear systems; matrix algebra; multivariable systems; affine parameter dependence; data matrices; multivariable linear parameter-varying systems; selection algorithm; state space representation; subspace techniques; Linear systems; Nonlinear systems; Physics; State estimation; State-space methods; Vectors; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2000. Proceedings of the 39th IEEE Conference on
Conference_Location :
Sydney, NSW
ISSN :
0191-2216
Print_ISBN :
0-7803-6638-7
Type :
conf
DOI :
10.1109/CDC.2000.912083
Filename :
912083
Link To Document :
بازگشت