DocumentCode :
2973214
Title :
A rigorous complexity analysis of the (1+1) evolutionary algorithm for linear functions with Boolean inputs
Author :
Droste, Stefan ; Jansen, Thomas ; Wegener, Ingo
Author_Institution :
Fachbereich Inf., Dortmund Univ., Germany
fYear :
1998
fDate :
4-9 May 1998
Firstpage :
499
Lastpage :
504
Abstract :
Evolutionary algorithms (EAs) are heuristic randomized algorithms which, by many impressive experiments, have been proven to behave quite well for optimization problems of various kinds. In this paper, a rigorous complexity analysis of the (1+1) evolutionary algorithm for linear functions with Boolean inputs is given. The analysis is carried out for different mutation rates. The main contribution of the paper is not the result that the expected run time of the (1+1) evolutionary algorithm is at most Θ(n ln n) for linear functions with n variables, but the presentation of methods showing how this result can be proven rigorously
Keywords :
Boolean functions; computational complexity; genetic algorithms; heuristic programming; randomised algorithms; (1+1) evolutionary algorithm; Boolean inputs; expected run time; heuristic randomized algorithms; linear functions; mutation rates; optimization problems; rigorous complexity analysis; Algorithm design and analysis; Collaboration; Ear; Electronic switching systems; Evolutionary computation; Genetic algorithms; Genetic mutations; Genetic programming; Heuristic algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
0-7803-4869-9
Type :
conf
DOI :
10.1109/ICEC.1998.700079
Filename :
700079
Link To Document :
بازگشت