DocumentCode :
2975247
Title :
Jump-diffusion processes on matrix Lie groups for Bayesian inference
Author :
Srivastava, Anuj ; Miller, Michael I. ; Grenander, Ulf
Author_Institution :
Florida State Univ., Tallahassee, FL, USA
fYear :
1999
fDate :
1999
Firstpage :
126
Lastpage :
129
Abstract :
A variety of engineering problems can be studied as inferences on constrained sets, Lie groups in particular. Additionally, the number of parameters to be estimated, namely the model-order, may also be unknown a-priori. We present a Bayesian approach by building a posterior probability distribution on a countable unions of Lie groups and utilizing the jump-diffusion processes to generate optimal estimators empirically, under this posterior. This approach is presented in the context of two well-known problems: pose estimation in object recognition and subspace estimation in signal processing
Keywords :
Bayes methods; Lie groups; constraint theory; inference mechanisms; matrix algebra; object recognition; parameter estimation; probability; signal processing; stochastic processes; Bayesian inference; Lie groups; constrained sets; countable unions; jump-diffusion processes; matrix Lie groups; model-order; object recognition; optimal estimators; pose estimation; posterior probability distribution; signal processing; stochastic flows; subspace estimation; Bayesian methods; Direction of arrival estimation; Integral equations; Manifolds; Markov processes; Object recognition; Parameter estimation; Probability distribution; Signal processing; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Higher-Order Statistics, 1999. Proceedings of the IEEE Signal Processing Workshop on
Conference_Location :
Caesarea
Print_ISBN :
0-7695-0140-0
Type :
conf
DOI :
10.1109/HOST.1999.778708
Filename :
778708
Link To Document :
بازگشت