DocumentCode :
2979835
Title :
Induction Motor parameters identification using Genetic Algorithms for varying flux levels
Author :
Kampisios, Konstantinos ; Zanchetta, Pericle ; Gerada, Chris ; Trentin, Andrew ; Jasim, Omar
Author_Institution :
Sch. of Electr. & Electron. Eng., Nottingham Univ., Nottingham
fYear :
2008
fDate :
1-3 Sept. 2008
Firstpage :
887
Lastpage :
892
Abstract :
This paper describes a novel approach for identifying induction motor electrical parameters in function of flux levels based on experimental transient measurements from a vector controlled induction motor (I.M.) drive and using an off line genetic algorithm (GA) routine with a linear machine model. The evaluation of the electrical motor parameters is achieved by minimizing the error between experimental and simulation model responses. An accurate and fast estimation of the electrical motor parameters is performed by running a number of optimizations using experimental tests taken under different operating conditions (flux level). Results are verified through a comparison of speed, torque and line current responses between the experimental IM drive and a Matlab - Simulink model.
Keywords :
genetic algorithms; induction motor drives; machine vector control; parameter estimation; GA; Matlab-Simulink model; genetic algorithms; induction motor parameters identification; linear machine model; transient measurements; vector controlled induction motor drive; Electric variables measurement; Genetic algorithms; Induction motors; Mathematical model; Parameter estimation; Performance evaluation; Power system planning; Rotors; Testing; Torque; Genetic Algorithms; Induction Motor Drives; System Identification; Vector Control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th
Conference_Location :
Poznan
Print_ISBN :
978-1-4244-1741-4
Electronic_ISBN :
978-1-4244-1742-1
Type :
conf
DOI :
10.1109/EPEPEMC.2008.4635379
Filename :
4635379
Link To Document :
بازگشت