DocumentCode :
2980479
Title :
Uneven allocation of membership functions for hierarchical fuzzy modeling using genetic algorithm
Author :
Tachibana, Kanta ; Furuhashi, Takeshi
Author_Institution :
Dept. of Inf. Eng., Nagoya Univ., Japan
fYear :
1998
fDate :
4-9 May 1998
Firstpage :
746
Lastpage :
751
Abstract :
Fuzzy modeling is a promising technique to describe input-output relationships of nonlinear system. This paper presents a new hierarchical fuzzy modeling method using Genetic Algorithm (GA). Uneven allocation of membership functions in the antecedent of each sub-model in the hierarchical fuzzy model can be achieved with the proposed method. This paper introduces a simple coding method and a quick rule identification method for efficient search for a sub-model using a Fuzzy Neural Network (FNN). The obtained hierarchical fuzzy model are probable to be more concise and more precise than those identified with the conventional methods
Keywords :
fuzzy neural nets; genetic algorithms; fuzzy neural network; genetic algorithm; hierarchical fuzzy modeling; hierarchical fuzzy modeling method; input-output relationships; membership functions; quick rule identification method; simple coding method; sub-model; uneven allocation; Fuzzy control; Fuzzy logic; Fuzzy neural networks; Fuzzy systems; Genetic algorithms; Genetic engineering; Input variables; Laboratories; Neural networks; Nonlinear systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
0-7803-4869-9
Type :
conf
DOI :
10.1109/ICEC.1998.700145
Filename :
700145
Link To Document :
بازگشت