DocumentCode :
2980513
Title :
Parameter-orientated segmentation algorithm evaluation
Author :
Al-Muhairi, Hassan ; Fleury, Martin ; Clark, Adrian F.
Author_Institution :
Khalifa Univ. (KUSTAR), Sharjah, United Arab Emirates
fYear :
2011
fDate :
19-22 Feb. 2011
Firstpage :
190
Lastpage :
193
Abstract :
Quantitative testing of segmentation algorithms implies rigorous testing against ground-truth segmentations. Though under-reported in the literature, the performance of a segmentation algorithm depends on the choice of input parameters across core, pre- and post-processing stages. The paper highlights the importance of post-processing parameters when the figure of merit is the Berkeley F-measure. It also shows that the search of a parameter space with a genetic algorithm is not only accelerated through the inclusion of a time factor in the cost function but the relative importance of different parameters is highlighted.
Keywords :
genetic algorithms; image segmentation; Berkeley F-measure; cost function; genetic algorithm; ground-truth segmentations; image segmentation; parameter-orientated segmentation algorithm evaluation; post-processing parameters; quantitative testing; time factor; Cost function; Databases; Gallium; Genetic algorithms; Image segmentation; Pixel; Time factors; Genetic algorithm; image segmentation; quantitative testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
GCC Conference and Exhibition (GCC), 2011 IEEE
Conference_Location :
Dubai
Print_ISBN :
978-1-61284-118-2
Type :
conf
DOI :
10.1109/IEEEGCC.2011.5752478
Filename :
5752478
Link To Document :
بازگشت