DocumentCode :
2981826
Title :
Evaluating the performance of low cost MEMS inertial sensors for seamless indoor/outdoor navigation
Author :
Kealy, Allison ; Roberts, Gethin ; Retscher, Guenther
Author_Institution :
Dept. of Geomatics, Univ. of Melbourne, Melbourne, VIC, Australia
fYear :
2010
fDate :
4-6 May 2010
Firstpage :
157
Lastpage :
167
Abstract :
For all mobile, location based applications, location availability (either on demand or continuously) is the primary performance requirement of the positioning technologies used. In most cases, this requirement outweighs that of meeting a specified accuracy, as the granularity of information provided to the user can be scaled around the computed positioning accuracy. What is therefore important is being able to generate a position solution and its accuracy at a specified level of confidence. For these applications, meeting the requirement of 100% availability is a significant challenge for individual positioning technologies, even more so when navigating between indoor and outdoor environments. Whilst operating under ideal operating conditions, GPS provides excellent positioning coverage. In indoor environments, position solutions can be generated using infrastructure based technologies such as RFiD and WiFi or augmentation sensors such as inertial navigation systems. Micro- Electromechanical Sensor (MEMS) inertial sensors are a popular option as they offer an autonomous capability that can potentially augment performance seamlessly across indoor and outdoor environments with marginal cost implications. This paper presents the results of a practical test undertaken to evaluate the performance of commercially available MEMS inertial sensors. In particular, results obtained that characterize the performance of these sensors against GPS in the transition zone between indoor and outdoor environments will be presented.
Keywords :
Availability; Costs; Electromechanical sensors; Global Positioning System; Indoor environments; Micromechanical devices; Navigation; Radiofrequency identification; Sensor phenomena and characterization; Sensor systems; GPS/INS; Inertial sensors; ubiquitous positioning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Position Location and Navigation Symposium (PLANS), 2010 IEEE/ION
Conference_Location :
Indian Wells, CA, USA
ISSN :
2153-358X
Print_ISBN :
978-1-4244-5036-7
Electronic_ISBN :
2153-358X
Type :
conf
DOI :
10.1109/PLANS.2010.5507132
Filename :
5507132
Link To Document :
بازگشت