DocumentCode :
2981831
Title :
A channel coding perspective of recommendation systems
Author :
Aditya, S.T. ; Dabeer, Onkar ; Dey, Bikash Kumar
Author_Institution :
Dept. of Electr. Eng., Indian Inst. of Technol. Bombay, Mumbai, India
fYear :
2009
fDate :
June 28 2009-July 3 2009
Firstpage :
319
Lastpage :
323
Abstract :
Motivated by recommendation systems, we consider the problem of estimating block constant binary matrices (of size m × n) from sparse and noisy observations. The observations are obtained from the underlying block constant matrix after unknown row and column permutations, erasures, and errors. We derive upper and lower bounds on the achievable probability of error. For fixed erasure and error probability, we show that there exists a constant C1 such that if the cluster sizes are less than C1 ln(mn), then for any algorithm the probability of error approaches one as m, n ¿ ¿. On the other hand, we show that a simple polynomial time algorithm gives probability of error diminishing to zero provided the cluster sizes are greater than C2 ln(mn) for a suitable constant C2.
Keywords :
channel coding; computational complexity; data mining; error statistics; information filters; optimisation; pattern clustering; sparse matrices; block constant binary sparse matrix estimation; channel coding perspective; data cluster size; data mining; error probability bound; fixed erasure channel; noisy observation; optimization problem; polynomial time algorithm; recommendation system; row-column permutation; Books; Channel coding; Clustering algorithms; Computer science; Error probability; Memoryless systems; Motion pictures; Polynomials; Recommender systems; Sparse matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
Type :
conf
DOI :
10.1109/ISIT.2009.5205549
Filename :
5205549
Link To Document :
بازگشت