Title :
Improved Slepian-Wolf exponents via Witsenhausen´s rate
Author :
Kelly, Benjamin ; Wagner, Aaron B.
Author_Institution :
Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA
fDate :
June 28 2009-July 3 2009
Abstract :
We provide new achievable error exponents for the problem of source coding with full side information at the decoder. In some instances our exponent strictly improves upon the previous applicable results of Csiszar; Oohama and Han; and the ldquoexpurgatedrdquo exponent of Csiszar and Korner. Our improvement follows from studying the growth rate of the chromatic number of strong (and) product graphs via a new information-theoretic functional on a graph. We also give an upper bound on Witsenhausen´s rate, i.e. the zero error rate for the problem of source coding with full side information at the decoder. An application of our functional to zero-error channel capacity is also given.
Keywords :
channel capacity; channel coding; information theory; source coding; Slepian-Wolf exponents; Witsenhausen rate; chromatic number; information-theoretic functional; product graphs; side information; source coding; zero error channel capacity; Channel capacity; Computer errors; Decoding; Encoding; Error analysis; Graph theory; H infinity control; Information theory; Source coding; Upper bound;
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
DOI :
10.1109/ISIT.2009.5205619