DocumentCode :
2983963
Title :
[Front cover]
fYear :
2012
fDate :
2-4 July 2012
Abstract :
The following topics are dealt with: artificial neural network; wavelet transform; intelligent data analysis; genetic algorithm; simulated annealing; relay node deployment; industrial wireless sensor network; computational intelligence; adaptive fuzzy inference neural network; facial emotional expression recognition; radial basis function network; machine learning algorithm ;minimally invasive treatment; reinforcement learning; human gait recognition; particle swarm optimization; nonlinear controller system; Elman network; harmony search algorithm; network intrusion detection; and traffic sign recognition.
Keywords :
computer network security; data analysis; emotion recognition; face recognition; fuzzy neural nets; fuzzy reasoning; gait analysis; genetic algorithms; learning (artificial intelligence); nonlinear control systems; object recognition; particle swarm optimisation; radial basis function networks; search problems; sensor placement; simulated annealing; surgery; traffic engineering computing; wavelet transforms; wireless sensor networks; Elman network; adaptive fuzzy inference neural network; artificial neural network; computational intelligence; facial emotional expression recognition; genetic algorithm; harmony search algorithm; human gait recognition; industrial wireless sensor network; intelligent data analysis; machine learning algorithm; minimally invasive treatment; network intrusion detection; nonlinear controller system; particle swarm optimization; radial basis function network; reinforcement learning; relay node deployment; simulated annealing; traffic sign recognition; wavelet transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence for Measurement Systems and Applications (CIMSA), 2012 IEEE International Conference on
Conference_Location :
Tianjin
ISSN :
2159-1547
Print_ISBN :
978-1-4577-1778-9
Type :
conf
DOI :
10.1109/CIMSA.2012.6269616
Filename :
6269616
Link To Document :
بازگشت