DocumentCode :
2985681
Title :
Nonlocal means algorithm using superformula kernel for image denoising
Author :
Lunbo Chen ; Yicong Zhou ; Chen, C.L.P.
Author_Institution :
Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China
fYear :
2013
fDate :
22-25 Oct. 2013
Firstpage :
1
Lastpage :
4
Abstract :
Using the superformula, a mathematic function describing many complex shapes and curves, this paper designs a new superformula kernel (SFK). We then introduce a novel nonlocal means (NLM) algorithm for image denoising by replacing the Gaussian kernel with the SFK. Simulations and comparisons demonstrate that the proposed kernel and algorithm show excellent denoising performance in terms of the peak signal and ratio (PSNR) and structural similarity (SSIM).
Keywords :
AWGN; Gaussian distribution; image denoising; Gaussian kernel; NLM algorithm; PSNR; SFK; SSIM; image denoising; mathematic function; nonlocal means algorithm; peak signal-to-noise ratio; superformula kernel; Image denoising; Kernel; Noise level; Noise measurement; Noise reduction; PSNR; Image denoising; Nonlocal Means; Superformula kernel; peak signal and ratio; structural similarity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
TENCON 2013 - 2013 IEEE Region 10 Conference (31194)
Conference_Location :
Xi´an
ISSN :
2159-3442
Print_ISBN :
978-1-4799-2825-5
Type :
conf
DOI :
10.1109/TENCON.2013.6718973
Filename :
6718973
Link To Document :
بازگشت