DocumentCode :
2988607
Title :
On systematic variable length unordered codes
Author :
Pezza, Laura ; Tallini, Luca G. ; Bose, Bella
Author_Institution :
Dip. Me. Mo. Mat., Univ. di Roma La Sapienza, Rome, Italy
fYear :
2009
fDate :
June 28 2009-July 3 2009
Firstpage :
2708
Lastpage :
2712
Abstract :
In an unordered code no codeword is contained in any other codeword. Unordered codes are all unidirectional error detecting (AUED) codes. In the binary case, it is well known that among all systematic codes with k information bits, Berger codes are optimal unordered codes with r = ¿log2(k+1)¿ check bits. This paper gives some new theory on variable length unordered codes and introduces a new class of systematic unordered codes with variable length check symbols. The average redundancy of these new codes is r ¿ (1/2) log2(¿ek/2) = (1/2) log2 k + 1.047, where k¿IN is the number of information bits. It is also shown that such codes are optimal in the class of systematic unordered codes with fixed length information symbols and variable length check symbols. The generalization to the non-binary case is also given.
Keywords :
computational complexity; error detection codes; variable length codes; Berger codes; all unidirectional error detecting code; codeword; fixed length information symbol; systematic unordered codes; systematic variable length unordered codes; variable length check symbol; Boolean algebra; Encoding; Hamming weight; Logic functions; Redundancy; Tellurium; Berger codes; asymmetric errors; unidirectional errors; unordered/AUED codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
Type :
conf
DOI :
10.1109/ISIT.2009.5205871
Filename :
5205871
Link To Document :
بازگشت