Title :
Reproducing kernel of image space of Haar wavelet transform
Author_Institution :
Appl. Sci. Coll., Harbin Univ. of Sci. & Technol., Harbin
Abstract :
In this paper, we first show that the reproducing kernel Hilbert space H[0, +infin) is the solution space of the wave equation. Second, using the reproducing kernel of the Hilbert space H[0, +infin) we obtain the concrete expressions of the reproducing kernel function of the image space of Haar wavelet transform. Based on the reproducing kernel function of the image space of Haar wavelet transform, we give the sampling theorem. The sampling formula makes the numerical computation easier than before, and it also provides theoretical base for us to further study the image space of the general wavelet transform.
Keywords :
Haar transforms; Hilbert spaces; image sampling; wave equations; wavelet transforms; Haar wavelet transform; image space; kernel Hilbert space; sampling theorem; wave equation; Hilbert space; Image analysis; Image sampling; Kernel; Pattern analysis; Pattern recognition; Space technology; Wavelet analysis; Wavelet transforms; Waves; Haar wavelet; Reproducing kernel; Reproducing kernel Hilbert space; Wavelet transform;
Conference_Titel :
Wavelet Analysis and Pattern Recognition, 2008. ICWAPR '08. International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-2238-8
Electronic_ISBN :
978-1-4244-2239-5
DOI :
10.1109/ICWAPR.2008.4635857