DocumentCode :
2988684
Title :
Reproducing kernel space based on GABOR wavelet transform
Author :
Deng, Cai-xia ; Tang, Yuan-yan ; Fu, Zuo-xian
Author_Institution :
Appl. Sci. Coll., Harbin Univ. of Sci. & Technol., Harbin
Volume :
2
fYear :
2008
fDate :
30-31 Aug. 2008
Firstpage :
644
Lastpage :
649
Abstract :
In this paper, the expression of the reproducing kernel function of image space of Gabor wavelet transform is shown based on the image space of the continuous wavelet transform as a reproducing kernel Hilbert space, and when scale factor and translation factor are fixed, a concrete characterization of image space of Gabor wavelet transform is given by the theory of reproducing kernel function. We obtain the isometrical identities and inversion formulae, which provides a new method for us to study the theory of image space of the general wavelet transform.
Keywords :
Hilbert spaces; wavelet transforms; Gabor wavelet transform; continuous wavelet transform; kernel space; Continuous wavelet transforms; Hilbert space; Kernel; Mathematics; Partial differential equations; Pattern analysis; Pattern recognition; Space technology; Wavelet analysis; Wavelet transforms; Gabor Wavelet; Reproducing Kernel; Reproducing Kernel Hilbert Space; Wavelet Transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wavelet Analysis and Pattern Recognition, 2008. ICWAPR '08. International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-2238-8
Electronic_ISBN :
978-1-4244-2239-5
Type :
conf
DOI :
10.1109/ICWAPR.2008.4635858
Filename :
4635858
Link To Document :
بازگشت