Title :
Average entropy functions
Author :
Chen, Qi ; He, Chen ; Jiang, Lingge ; Wang, Qingchuan
Author_Institution :
Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China
fDate :
June 28 2009-July 3 2009
Abstract :
The closure of the set of entropy functions associated with n discrete variables, ¿¿¿¿¿¿n*, is a convex cone in (2n - 1)-dimensional space, but its full characterization remains an open problem. In this paper, we map ¿¿¿n* to an n-dimensional region ¿¿n* by averaging the joint entropies with the same number of variables, and show that the simpler ¿¿n* can be characterized solely by the Shannon-type information inequalities.
Keywords :
Reed-Solomon codes; entropy codes; linear codes; random codes; set theory; vectors; Reed-Solomon code; Shannon-type information inequality; average joint entropy function; convex cone; linear network coding; n-dimensional discrete random vector; random codeword; set theory; Cramer-Rao bounds; Entropy; Helium; Random variables; Sufficient conditions; Vectors;
Conference_Titel :
Information Theory, 2009. ISIT 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4312-3
Electronic_ISBN :
978-1-4244-4313-0
DOI :
10.1109/ISIT.2009.5205939